Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8169, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071370

RESUMO

SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.


Assuntos
COVID-19 , DNA Glicosilases , Cricetinae , Animais , Humanos , COVID-19/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genoma , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
2.
J Biol Chem ; 299(8): 105028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423306

RESUMO

As part of the antiviral response, cells activate the expressions of type I interferons (IFNs) and proinflammatory mediators to control viral spreading. Viral infections can impact DNA integrity; however, how DNA damage repair coordinates antiviral response remains elusive. Here we report Nei-like DNA glycosylase 2 (NEIL2), a transcription-coupled DNA repair protein, actively recognizes the oxidative DNA substrates induced by respiratory syncytial virus (RSV) infection to set the threshold of IFN-ß expression. Our results show that NEIL2 antagonizes nuclear factor κB (NF-κB) acting on the IFN-ß promoter early after infection, thus limiting gene expression amplified by type I IFNs. Mice lacking Neil2 are far more susceptible to RSV-induced illness with an exuberant expression of proinflammatory genes and tissue damage, and the administration of NEIL2 protein into the airway corrected these defects. These results suggest a safeguarding function of NEIL2 in controlling IFN-ß levels against RSV infection. Due to the short- and long-term side effects of type I IFNs applied in antiviral therapy, NEIL2 may provide an alternative not only for ensuring genome fidelity but also for controlling immune responses.


Assuntos
DNA Glicosilases , Interferon beta , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios , Animais , Camundongos , DNA , DNA Glicosilases/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon beta/genética , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia
3.
J Biol Chem ; 299(3): 102991, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758800

RESUMO

A growing body of evidence indicates that RNA plays a critical role in orchestrating DNA double-strand break repair (DSBR). Recently, we showed that homologous nascent RNA can be used as a template for error-free repair of double-strand breaks (DSBs) in the transcribed genome and to restore the missing sequence at the break site via the transcription-coupled classical nonhomologous end-joining (TC-NHEJ) pathway. TC-NHEJ is a complex multistep process in which a reverse transcriptase (RT) is essential for synthesizing the DNA strand from template RNA. However, the identity of the RT involved in the TC-NHEJ pathway remained unknown. Here, we report that DNA polymerase eta (Pol η), known to possess RT activity, plays a critical role in TC-NHEJ. We found that Pol η forms a multiprotein complex with RNAP II and other TC-NHEJ factors, while also associating with nascent RNA. Moreover, purified Pol η, along with DSBR proteins PNKP, XRCC4, and Ligase IV can fully repair RNA templated 3'-phosphate-containing gapped DNA substrate. In addition, we demonstrate here that Pol η deficiency leads to accumulation of R-loops and persistent strand breaks in the transcribed genes. Finally, we determined that, in Pol η depleted but not in control cells, TC-NHEJ-mediated repair was severely abrogated when a reporter plasmid containing a DSB with several nucleotide deletion within the E. coli lacZ gene was introduced for repair in lacZ-expressing mammalian cells. Thus, our data strongly suggest that RT activity of Pol η is required in error-free DSBR.


Assuntos
Quebras de DNA de Cadeia Dupla , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Reparo do DNA , Reparo do DNA por Junção de Extremidades , DNA , RNA/genética , DNA Ligase Dependente de ATP , Mamíferos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Enzimas Reparadoras do DNA/genética
4.
Antioxidants (Basel) ; 11(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009301

RESUMO

Cystathionine-y-lyase (CSE) is a critical enzyme for hydrogen sulfide (H2S) biosynthesis and plays a key role in respiratory syncytial virus (RSV) pathogenesis. The transcription factor NRF2 is the master regulator of cytoprotective and antioxidant gene expression, and is degraded during RSV infection. While some evidence supports the role of NRF2 in CSE gene transcription, its role in CSE expression in airway epithelial cells is not known. Here, we show that RSV infection decreased CSE expression and activity in primary small airway epithelial (SAE) cells, while treatment with tert-butylhydroquinone (tBHQ), an NRF2 inducer, led to an increase of both. Using reporter gene assays, we identified an NRF2 response element required for the NRF2 inducible expression of the CSE promoter. Electrophoretic mobility shift assays demonstrated inducible specific NRF2 binding to the DNA probe corresponding to the putative CSE promoter NRF2 binding sequence. Using chromatin immunoprecipitation assays, we found a 50% reduction in NRF2 binding to the endogenous CSE proximal promoter in SAE cells infected with RSV, and increased binding in cells stimulated with tBHQ. Our results support the hypothesis that NRF2 regulates CSE gene transcription in airway epithelial cells, and that RSV-induced NRF2 degradation likely accounts for the observed reduced CSE expression and activity.

5.
Res Sq ; 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35665009

RESUMO

Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.

6.
DNA Repair (Amst) ; 107: 103204, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390916

RESUMO

Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.


Assuntos
Reparo do DNA
7.
J Biol Chem ; 296: 100723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33932404

RESUMO

Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.


Assuntos
DNA Glicosilases/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Animais , Movimento Celular , Regulação da Expressão Gênica , Inflamação/metabolismo , Pulmão/patologia , Camundongos , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205441

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Assuntos
Ataxina-3/genética , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Doença de Machado-Joseph/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Ataxina-3/metabolismo , Encéfalo/patologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Peptídeos/genética , RNA Interferente Pequeno/metabolismo
10.
Nat Commun ; 7: 13049, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703167

RESUMO

DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , RNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HEK293 , Humanos , Óperon Lac , Plasmídeos , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Ribonuclease H/metabolismo , Transcrição Gênica
11.
J Biol Chem ; 290(12): 7634-46, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25572399

RESUMO

Adequate availability of iron is important for cellular energy metabolism. Catecholamines such as epinephrine and norepinephrine promote energy expenditure to adapt to conditions that arose due to stress. To restore the energy balance, epinephrine/norepinephrine-exposed cells may face higher iron demand. So far, no direct role of epinephrine/norepinephrine in cellular iron homeostasis has been reported. Here we show that epinephrine/norepinephrine regulates iron homeostasis components such as transferrin receptor-1 and ferritin-H in hepatic and skeletal muscle cells by promoting the binding of iron regulatory proteins to iron-responsive elements present in the UTRs of transferrin receptor-1 and ferritin-H transcripts. Increased transferrin receptor-1, decreased ferritin-H, and increased iron-responsive element-iron regulatory protein interaction are also observed in liver and muscle tissues of epinephrine/norepinephrine-injected mice. We demonstrate the role of epinephrine/norepinephrine-induced generation of reactive oxygen species in converting cytosolic aconitase (ACO1) into iron regulatory protein-1 to bind iron-responsive elements present in UTRs of transferrin receptor-1 and ferritin-H. Our study further reveals that mitochondrial iron content and mitochondrial aconitase (ACO2) activity are elevated by epinephrine/norepinephrine that are blocked by the antioxidant N-acetyl cysteine and iron regulatory protein-1 siRNA, suggesting involvement of reactive oxygen species and iron regulatory protein-1 in this mechanism. This study reveals epinephrine and norepinephrine as novel regulators of cellular iron homeostasis.


Assuntos
Catecolaminas/fisiologia , Metabolismo Energético , Homeostase , Proteínas Reguladoras de Ferro/fisiologia , Ferro/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Linhagem Celular Tumoral , Primers do DNA , Humanos , Fígado/citologia , Fígado/metabolismo , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo
12.
PLoS One ; 8(4): e62128, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626778

RESUMO

Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Insulina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células 3T3-L1 , Região 5'-Flanqueadora , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Estabilidade Proteica/efeitos dos fármacos , RNA Mensageiro/genética , Elementos de Resposta , Deleção de Sequência
13.
Biochim Biophys Acta ; 1832(2): 293-301, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160040

RESUMO

Hepatic iron is known to regulate insulin signaling pathways and to influence insulin sensitivity in insulin resistance (IR) patients. However, the role of insulin on hepatic iron homeostasis remains unexplored. Here, we report that insulin promotes transferrin-bound iron uptake but shows no influence on non transferrin-bound iron uptake in human hepatic HepG2 cells. As a mechanism we detected increased transferrin receptor-1 (TfR1) expression both at protein and mRNA levels. Unaltered stability of protein and transcript of TfR1 suggested the regulation at transcriptional level that was confirmed by promoter activity. Involvement of transcription factor hypoxia inducible factor-1 (HIF-1) was shown by mutational analyses of the TfR1 promoter region and by electrophoretic mobility shift assay. When HepG2 cells were transfected with specific siRNA targeted to 3'UTR of HIF-1α, the regulatory subunit of HIF-1; insulin-induced TfR1 expression and iron uptake were inhibited. Transfection of cDNA expressing stable form of HIF-1α reversed the increased TfR1 expression and iron uptake. These results suggest a novel role of insulin in hepatic iron uptake by a HIF-1 dependent transcriptional regulation of TfR1.


Assuntos
Antígenos CD/genética , Hepatócitos/metabolismo , Fator 1 Induzível por Hipóxia/fisiologia , Insulina/fisiologia , Ferro/metabolismo , Receptores da Transferrina/genética , Transcrição Gênica/fisiologia , Regiões 3' não Traduzidas , Sequência de Bases , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Free Radic Biol Med ; 48(11): 1492-500, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20211720

RESUMO

Glutathione (GSH) depletion is often detected in chronic pathological conditions like hepatitis C infection, alcohol consumption or xenobiotic assault with simultaneous reactive oxygen species (ROS) generation and hepatic iron overload. However, relation between GSH depletion and regulators of iron homeostasis is not clear so far. To determine that hepatic HepG2 cells were treated with GSH synthesis inhibitor butathione sulfoximine (BSO) and a dual regulation of ceruloplasmin (Cp) that involves in hepatic iron release was detected unlike other iron homeostasis regulators. BSO treatment that caused marginal GSH deficiency increased Cp synthesis due to increased transcription mediated by activator protein (AP)-1-binding site. In higher GSH deficiency (> 40 %) with increased ROS generation, Cp expression was decreased due to promotion of Cp mRNA decay mediated by 3'untranslated region (3'UTR) as found by transfecting chimera of chloramphenicol acetyl transferase (CAT) gene with Cp 3'UTR. RNA gel shift assay showed significant reduction in 3'UTR binding protein complex in similar condition. Decreased CAT expression and RNA-protein complex binding are reversed by pretreatment with antioxidant N-acetyl cysteine suggesting 3'UTR binding protein complex is redox-sensitive. This unique and opposite regulation of Cp provides a mechanism of hepatic iron-deposition during glutathione deficiency detected in chronic pathological conditions.


Assuntos
Butionina Sulfoximina/farmacologia , Ceruloplasmina/metabolismo , Glutationa/biossíntese , Sobrecarga de Ferro/fisiopatologia , Ferro/metabolismo , Fígado/metabolismo , Regiões 3' não Traduzidas/fisiologia , Acetilcisteína/farmacologia , Ceruloplasmina/biossíntese , Glutationa/genética , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , RNA Mensageiro/metabolismo
15.
J Biol Chem ; 284(3): 1873-83, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19019832

RESUMO

Ceruloplasmin (Cp), a copper-containing protein, plays a significant role in body iron homeostasis as aceruloplasminemia patients and Cp knock-out mice exhibit iron overload in several tissues including liver and brain. Several other functions as oxidant, as antioxidant, and in nitric oxide metabolism are also attributed to Cp. Despite its role in iron oxidation and other biological oxidation reactions the regulation of Cp by reactive oxygen species (ROS) remains unexplored. Cp is synthesized in liver as a secretory protein and predominantly as a glycosylphosphatidylinositol-anchored membrane-bound form in astroglia. In this study we demonstrated that Cp expression is decreased by an mRNA decay mechanism in response to extracellular (H2O2) or intracellular oxidative stress (by mitochondrial chain blockers rotenone or antimycin A) in both hepatic and astroglial cells. The promotion of Cp mRNA decay is conferred by its 3'-untranslated region (UTR). When chloramphenicol acetyltransferase (CAT) gene was transfected as a chimera with Cp 3'-UTR in hepatic or astroglial cells, in response to either H2O2, rotenone, or antimycin A, the expression of CAT transcript was decreased, whereas expression of a 3'-UTR-less CAT transcript remained unaffected. RNA gel shift assay showed significant reduction in 3'-UTR-binding protein complex by ROS in both cell types that was reversed by the antioxidant N-acetylcysteine suggesting that ROS affects RNA-protein complex formation to promote Cp mRNA decay. Our finding is not only the first demonstration of regulation of Cp by ROS by a novel post-transcriptional mechanism but also provides a mechanism of iron deposition in neurodegenerative diseases.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Ceruloplasmina/biossíntese , Peróxido de Hidrogênio/farmacologia , Sobrecarga de Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxidantes/farmacologia , Estabilidade de RNA/efeitos dos fármacos , Regiões 3' não Traduzidas/genética , Acetilcisteína/farmacologia , Animais , Antifúngicos/farmacologia , Antimicina A/farmacologia , Linhagem Celular Tumoral , Ceruloplasmina/genética , Sequestradores de Radicais Livres/farmacologia , Humanos , Sobrecarga de Ferro/genética , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Rotenona/farmacologia , Desacopladores/farmacologia
16.
Biochem J ; 402(1): 135-41, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17032174

RESUMO

Cp (ceruloplasmin), a copper containing plasma protein, mainly synthesized in the liver, is known to be functional between the interface of iron and copper metabolism. We have reported previously that Cp is regulated by cellular iron status, but the process of the regulation of Cp by copper still remains a subject for investigation. In the present paper, we show that PDTC (pyrrolidine dithiocarbamate), a thiol compound widely known to increase intracellular redox copper, regulates Cp expression in hepatic cells by a copper-dependent transcriptional mechanism. To find out the mechanism of induction, chimeric constructs of the Cp 5'-flanking region driving luciferase were transfected into human hepatic cells. Deletion and mutational analyses showed the requirement of a novel APRE [AP-1 (activator protein-1) responsive element] present about 3.7 kb upstream of the translation initiation site. The role of AP-1 was confirmed by electrophoretic mobility-shift analysis. Western blot and overexpression studies detected the AP-1 as a heterodimer of c-jun and c-fos proteins. The activation of AP-1 was found to be copper-dependent as a specific extracellular chelator bathocuproine disulfonic acid blocked PDTC-mediated induction of AP-1-DNA binding and increased reporter gene activity. Whereas, in a copper-free medium, PDTC failed to activate either AP-1 or Cp synthesis, supplementation of copper could reverse AP-1 activation and Cp synthesis. Our finding is not only the first demonstration of regulation of Cp by redox copper but may also explain previous findings of increased Cp expression in cancers like hepatocarcinoma, where the intracellular copper level is higher in a redox compromised environment.


Assuntos
Ceruloplasmina/genética , Cobre/metabolismo , Hepatócitos/metabolismo , Fator de Transcrição AP-1/metabolismo , Antioxidantes/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ceruloplasmina/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Modelos Genéticos , Oxirredução , Pirrolidinas/farmacologia , Transdução de Sinais , Tiocarbamatos/farmacologia , Fator de Transcrição AP-1/genética , Transcrição Gênica/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...